Restrictions and Computational Methods for Nonabelian PDSs

Seth Nelson

William & Mary

Joint work with Dr. Eric Swartz

Today, we will cover:

Ott's work, and our extension of his work, on nonabelian PDSs.

Today, we will cover:

- Ott's work, and our extension of his work, on nonabelian PDSs.
 - This is the 'theoretical' portion of the paper.

Today, we will cover:

- Ott's work, and our extension of his work, on nonabelian PDSs.
 - This is the 'theoretical' portion of the paper.

Our own direct methods to construct PDSs.

Today, we will cover:

- Ott's work, and our extension of his work, on nonabelian PDSs.
 - This is the 'theoretical' portion of the paper.

- Our own direct methods to construct PDSs.
 - That is, for a group G and PDS D in G, we compute $|h^G \cap D|$ for every h.

▶ Definition: Let G be a finite group. A representation of G is a homomorphism $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$.

- ▶ Definition: Let G be a finite group. A representation of G is a homomorphism $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$.
- ▶ Definition: For a representation $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$, we call n the degree of \mathfrak{F} .

- ▶ Definition: Let G be a finite group. A representation of G is a homomorphism $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$.
- ▶ Definition: For a representation $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$, we call n the degree of \mathfrak{F} .
- ▶ Remark: Take a representation $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$. Then, G acts on \mathbb{C}^n by $g \cdot v = \mathfrak{F}(g)v$.

- ▶ Definition: Let G be a finite group. A representation of G is a homomorphism $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$.
- ▶ Definition: For a representation $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$, we call n the degree of \mathfrak{F} .
- ▶ Remark: Take a representation $\mathfrak{F}: G \longrightarrow \mathrm{GL}_n(\mathbb{C})$. Then, G acts on \mathbb{C}^n by $g \cdot v = \mathfrak{F}(g)v$.
- **Definition:** We call \mathfrak{F} an irreducible representation if the G-action induced by \mathfrak{F} turns \mathbb{C}^n into an irreducible $\mathbb{C}[G]$ -module.

▶ Definition: The function $\chi: G \longrightarrow \mathbb{C}$ given by $\chi(g) = \operatorname{Tr}(\mathfrak{F}(g))$ for all $g \in G$ is called the character afforded by \mathfrak{F} .

- ▶ Definition: The function $\chi: G \longrightarrow \mathbb{C}$ given by $\chi(g) = \operatorname{Tr}(\mathfrak{F}(g))$ for all $g \in G$ is called the character afforded by \mathfrak{F} .
- ▶ Remark: If \mathfrak{F} is a representation of degree n affording χ , then we say that χ has degree n. Also, $\chi(1) = n$.

- ▶ Definition: The function $\chi: G \longrightarrow \mathbb{C}$ given by $\chi(g) = \operatorname{Tr}(\mathfrak{F}(g))$ for all $g \in G$ is called the character afforded by \mathfrak{F} .
- ▶ Remark: If \mathfrak{F} is a representation of degree n affording χ , then we say that χ has degree n. Also, $\chi(1) = n$.
- **Definition**: We call χ irreducible if \mathfrak{F} is irreducible.

- ▶ Definition: The function $\chi: G \longrightarrow \mathbb{C}$ given by $\chi(g) = \operatorname{Tr}(\mathfrak{F}(g))$ for all $g \in G$ is called the character afforded by \mathfrak{F} .
- ▶ Remark: If \mathfrak{F} is a representation of degree n affording χ , then we say that χ has degree n. Also, $\chi(1) = n$.
- **Definition**: We call χ irreducible if \mathfrak{F} is irreducible.
- ► Lemma: We denote by Irr(G) the set of irreducible characters. This set is finite.

Definition: We call χ a linear character if χ is degree 1.

- **Definition**: We call χ a linear character if χ is degree 1.
- ▶ Remark: Linear representations are also homomorphisms $G \longrightarrow \mathbb{C}$, for if \mathfrak{F} affords a linear character ξ , then $\mathfrak{F}(g) = [\xi(g)]$.

- ▶ Definition: We call χ a linear character if χ is degree 1.
- ▶ Remark: Linear representations are also homomorphisms $G \longrightarrow \mathbb{C}$, for if \mathfrak{F} affords a linear character ξ , then $\mathfrak{F}(g) = [\xi(g)]$.
- ▶ There is always at least one linear character, called the principal character and denoted by 1_G , and given by $g \mapsto 1$ for all $g \in G$.

- **Definition**: We call χ a linear character if χ is degree 1.
- ▶ Remark: Linear representations are also homomorphisms $G \longrightarrow \mathbb{C}$, for if \mathfrak{F} affords a linear character ξ , then $\mathfrak{F}(g) = [\xi(g)]$.
- ▶ There is always at least one linear character, called the principal character and denoted by $\mathbf{1}_G$, and given by $g \mapsto 1$ for all $g \in G$.
- ► The set \mathcal{L} of all linear characters forms a group under the multiplication $\xi \chi(g) = \xi(g) \chi(g)$.

▶ Definition: We call $\phi : G \longrightarrow \mathbb{C}$ a class function if $\chi(h) = \chi(g^{-1}hg)$ for all $g \in G$.

- ▶ Definition: We call $\phi : G \longrightarrow \mathbb{C}$ a class function if $\chi(h) = \chi(g^{-1}hg)$ for all $g \in G$.
- Theorem: The set of class functions are a vector space over ℂ, and this vector space is equipped with an inner product, denoted by [·,·].

- ▶ Definition: We call $\phi : G \longrightarrow \mathbb{C}$ a class function if $\chi(h) = \chi(g^{-1}hg)$ for all $g \in G$.
- Theorem: The set of class functions are a vector space over ℂ, and this vector space is equipped with an inner product, denoted by [·,·].
- ▶ Lemma: All characters are class functions.

- ▶ Definition: We call $\phi : G \longrightarrow \mathbb{C}$ a class function if $\chi(h) = \chi(g^{-1}hg)$ for all $g \in G$.
- ► Theorem: The set of class functions are a vector space over C, and this vector space is equipped with an inner product, denoted by [·,·].
- ▶ Lemma: All characters are class functions.
- **Lemma**: If ψ is a class function, then

$$\psi = \sum_{\chi \in \operatorname{Irr}(G)} [\psi, \chi] \chi.$$

▶ D is always a PDS, \mathfrak{F} is always an irreducible representation, χ is always an irreducible character, and ξ is always a linear character.

- ▶ D is always a PDS, $\mathfrak F$ is always an irreducible representation, χ is always an irreducible character, and ξ is always a linear character.
- Lemma: If \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has at most two eigenvalues, denoted by θ_1, θ_2 .

- ▶ D is always a PDS, $\mathfrak F$ is always an irreducible representation, χ is always an irreducible character, and ξ is always a linear character.
- Lemma: If \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has at most two eigenvalues, denoted by θ_1, θ_2 .
 - One proves the above fact by observing that if D is a (v, k, λ, μ) -PDS, then $\mathfrak{F}(D)^2 = k(1) + \lambda D + \mu(G D 1)$.

- ▶ D is always a PDS, $\mathfrak F$ is always an irreducible representation, χ is always an irreducible character, and ξ is always a linear character.
- Lemma: If \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has at most two eigenvalues, denoted by θ_1, θ_2 .
 - One proves the above fact by observing that if D is a (v, k, λ, μ) -PDS, then $\mathfrak{F}(D)^2 = k(1) + \lambda D + \mu(G D 1)$.
- ▶ Lemma: Both θ_1, θ_2 are the non Perron eigenvalues of Cay(G, D).

- ▶ D is always a PDS, $\mathfrak F$ is always an irreducible representation, χ is always an irreducible character, and ξ is always a linear character.
- Lemma: If \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has at most two eigenvalues, denoted by θ_1, θ_2 .
 - One proves the above fact by observing that if D is a (v, k, λ, μ) -PDS, then $\mathfrak{F}(D)^2 = k(1) + \lambda D + \mu(G D 1)$.
- ▶ Lemma: Both θ_1, θ_2 are the non Perron eigenvalues of Cay(G, D).
- We define $\Delta = (\theta_1 \theta_2)^2$. This is the discriminant of Cay(G, D).

Application to Partial Difference Sets

► The only known general restrictions for nonabelian PDSs is given by Swartz-Tauscheck in Restrictions on parameters of partial difference sets in nonabelian groups.

- ► The only known general restrictions for nonabelian PDSs is given by Swartz-Tauscheck in Restrictions on parameters of partial difference sets in nonabelian groups.
- Some progress on PDSs corresponding to particular cases, like Generalized Quadrangles (GQs).

- ► The only known general restrictions for nonabelian PDSs is given by Swartz-Tauscheck in Restrictions on parameters of partial difference sets in nonabelian groups.
- Some progress on PDSs corresponding to particular cases, like Generalized Quadrangles (GQs).
- ► For example, Swartz-Tauscheck's paper was inspired by Yoshiara's work, A generalized quadrangle with an automorphism group acting regularly on the points.

► Character theory is an especially powerful tool in analyzing abelian PDSs. In the nonabelian case, little is known.

- ► Character theory is an especially powerful tool in analyzing abelian PDSs. In the nonabelian case, little is known.
- ▶ Ott used techniques from character theory to solve a 30 year old conjecture of Ghinelli on nonabelian PDSs corresponding to GQs, in his paper On generalized quadrangles with a group of automorphisms acting regularly on the point set, difference sets with -1 as multiplier and a conjecture of Ghinelli.

- ► Character theory is an especially powerful tool in analyzing abelian PDSs. In the nonabelian case, little is known.
- ▶ Ott used techniques from character theory to solve a 30 year old conjecture of Ghinelli on nonabelian PDSs corresponding to GQs, in his paper On generalized quadrangles with a group of automorphisms acting regularly on the point set, difference sets with -1 as multiplier and a conjecture of Ghinelli.
- ▶ We extend Ott's results to the general case.

Generalizations of Ott's Results

▶ Let D be a (v, k, λ, μ) -PDS in a group G. Let H consist of all linear characters ξ of order coprime to Δ , and suppose H is nontrivial. Define N as $N = \bigcap_{\xi \in H} \ker \xi$. Then,

Generalizations of Ott's Results

- ▶ Let D be a (v, k, λ, μ) -PDS in a group G. Let H consist of all linear characters ξ of order coprime to Δ , and suppose H is nontrivial. Define N as $N = \bigcap_{\xi \in H} \ker \xi$. Then,
- ► Theorem: If $\xi \in H$, and χ is a nonprincipal irreducible character, then $\xi \chi(D) = \chi(D)$.

Generalizations of Ott's Results

- ▶ Let D be a (v, k, λ, μ) -PDS in a group G. Let H consist of all linear characters ξ of order coprime to Δ , and suppose H is nontrivial. Define N as $N = \bigcap_{\xi \in H} \ker \xi$. Then,
- ► Theorem: If $\xi \in H$, and χ is a nonprincipal irreducible character, then $\xi \chi(D) = \chi(D)$.
- ► Theorem: If $a \notin N$, $\xi \in H$, $\xi \neq 1_G$, then $|a^G \cap D||C_G(a)| = k \xi(D)$.

Generalizations of Ott's Results

- ▶ Let D be a (v, k, λ, μ) -PDS in a group G. Let H consist of all linear characters ξ of order coprime to Δ , and suppose H is nontrivial. Define N as $N = \bigcap_{\xi \in H} \ker \xi$. Then,
- ► Theorem: If $\xi \in H$, and χ is a nonprincipal irreducible character, then $\xi \chi(D) = \chi(D)$.
- ► Theorem: If $a \notin N$, $\xi \in H$, $\xi \neq 1_G$, then $|a^G \cap D||C_G(a)| = k \xi(D)$.
- ▶ Theorem: Let p be a prime dividing |H| and $k \theta_{\alpha}$, $(\alpha \in \{1,2\})$. Let P be a Sylow p-subgroup of G. Let π_{β} be the product of primes powers q such that q|v and $q|(k \theta_{\beta})$ $(\beta \neq \alpha)$ such that $q \not\mid \sqrt{\Delta}$. Then, if G is solvable,

$$\pi_{\beta} \equiv 1 \pmod{p}$$
.

Definition: We define $\Phi: G \longrightarrow \mathbb{C}$ by

$$\Phi(h) = |h^G \cap D||C_G(h)|.$$

Definition: We define $\Phi: G \longrightarrow \mathbb{C}$ by

$$\Phi(h) = |h^G \cap D||C_G(h)|.$$

Remark: This function also has a combinatorial definition. Say that $\Gamma = \operatorname{Cay}(G, D)$, and that G acts on Γ in the natural way. Then, $\Phi(g)$ counts how many vertices v of Γ are adjacent to v^g . In the same way, if G acts regularly on an SRG Γ , then we get a Φ function.

Definition: We define $\Phi: G \longrightarrow \mathbb{C}$ by

$$\Phi(h) = |h^G \cap D||C_G(h)|.$$

- Remark: This function also has a combinatorial definition. Say that $\Gamma = \operatorname{Cay}(G, D)$, and that G acts on Γ in the natural way. Then, $\Phi(g)$ counts how many vertices v of Γ are adjacent to v^g . In the same way, if G acts regularly on an SRG Γ , then we get a Φ function.
- ightharpoonup Ott first noticed that Φ is a class function, and he showed that

$$\Phi = \sum_{\chi \in \mathrm{Irr}(G)} \overline{\chi(D)} \chi.$$

By proving that $[\Phi, \chi] = \overline{\chi(D)}$.

Ott's theorems for PDSs come about via analysis of the function Φ.

- Ott's theorems for PDSs come about via analysis of the function Φ.
- ▶ Theorem: If $\xi \in H$, $\chi \in Irr(G)$, with $\chi \neq 1_G$, then $\xi \chi(D) = \chi(D)$.

- Ott's theorems for PDSs come about via analysis of the function Φ.
- ► Theorem: If $\xi \in H$, $\chi \in Irr(G)$, with $\chi \neq 1_G$, then $\xi \chi(D) = \chi(D)$.
- ▶ Recall H consists of all linear characters ξ of order coprime to Δ . Define N as $N = \bigcap_{\xi \in H} \ker \xi$.

- Ott's theorems for PDSs come about via analysis of the function Φ.
- ► Theorem: If $\xi \in H$, $\chi \in Irr(G)$, with $\chi \neq 1_G$, then $\xi \chi(D) = \chi(D)$.
- ▶ Recall H consists of all linear characters ξ of order coprime to Δ . Define N as $N = \bigcap_{\xi \in H} \ker \xi$.
- ► Theorem: Suppose *H* is nontrivial. If $a \notin N$ and $\xi \in H$ with $1_G \neq \xi$, then $\Phi(a) = |a^G \cap D||C_G(a)| = k \xi(D)$.

- Ott's theorems for PDSs come about via analysis of the function Φ.
- ► Theorem: If $\xi \in H$, $\chi \in Irr(G)$, with $\chi \neq 1_G$, then $\xi \chi(D) = \chi(D)$.
- ▶ Recall H consists of all linear characters ξ of order coprime to Δ . Define N as $N = \bigcap_{\xi \in H} \ker \xi$.
- ► Theorem: Suppose *H* is nontrivial. If $a \notin N$ and $\xi \in H$ with $1_G \neq \xi$, then $\Phi(a) = |a^G \cap D||C_G(a)| = k \xi(D)$.
- ▶ Main Idea: Use the previous theorem $\xi \chi(D) = \chi(D)$ since $\xi \in H$ and inspect both parts of

$$\Phi(a) = \sum_{\xi \in H} \overline{\xi(D)}\chi(a) + \sum_{\chi \notin H} \overline{\chi(D)}\chi(a).$$

▶ Recall that if *G* acts regularly on an SRG, then we get a PDS.

- ightharpoonup Recall that if G acts regularly on an SRG, then we get a PDS.
- ▶ Recall also that if \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has all its eigenvalues as θ_1, θ_2 , which are the non Perron eigenvalues of Cay(G, D).

- ightharpoonup Recall that if G acts regularly on an SRG, then we get a PDS.
- ▶ Recall also that if \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has all its eigenvalues as θ_1, θ_2 , which are the non Perron eigenvalues of Cay(G, D).
- Finally, we also have that

$$\Phi = \sum_{\chi \in \mathrm{Irr}(G)} \overline{\chi(D)} \chi.$$

- ightharpoonup Recall that if G acts regularly on an SRG, then we get a PDS.
- ▶ Recall also that if \mathfrak{F} is an irreducible representation, then $\mathfrak{F}(D)$ has all its eigenvalues as θ_1, θ_2 , which are the non Perron eigenvalues of Cay(G, D).
- Finally, we also have that

$$\Phi = \sum_{\chi \in \mathrm{Irr}(G)} \overline{\chi(D)} \chi.$$

▶ Therefore, if there is no set $S \subseteq G$ such that $\overline{\chi(S)}$ is a sum of θ_1, θ_2 , then G does not contain a PDS.

Main Idea: To search for a (v, k, λ, μ) -PDS in G, for the full set of irreducible characters χ_1, \ldots, χ_n , compute the values $\overline{\chi_i(S)}$ for every $S \subseteq G$, and check that

$$\overline{\chi_i(S)} = \overline{a\theta_1 + b\theta_2} = a\theta_1 + b\theta_2$$

where $a + b = \chi_i(1)$.

Main Idea: To search for a (v, k, λ, μ) -PDS in G, for the full set of irreducible characters χ_1, \ldots, χ_n , compute the values $\overline{\chi_i(S)}$ for every $S \subseteq G$, and check that

$$\overline{\chi_i(S)} = \overline{a\theta_1 + b\theta_2} = a\theta_1 + b\theta_2$$

where $a + b = \chi_i(1)$.

Problem: There are too many possible sets S.

Main Idea: To search for a (v, k, λ, μ) -PDS in G, for the full set of irreducible characters χ_1, \ldots, χ_n , compute the values $\overline{\chi_i(S)}$ for every $S \subseteq G$, and check that

$$\overline{\chi_i(S)} = \overline{a\theta_1 + b\theta_2} = a\theta_1 + b\theta_2$$

where $a + b = \chi_i(1)$.

- ▶ Problem: There are too many possible sets *S*.
- ▶ Solution: Enforce modular constraints on *S*, and search subject to these constraints.

▶ Solution: Enforce modular constraints on *S*, and search subject to these constraints.

- ▶ Solution: Enforce modular constraints on *S*, and search subject to these constraints.
- ▶ Since $\Delta = (\theta_1 \theta_2)^2$, then $\theta_1 \equiv \theta_2 \pmod{\sqrt{\Delta}}$.

- ► Solution: Enforce modular constraints on *S*, and search subject to these constraints.
- ▶ Since $\Delta = (\theta_1 \theta_2)^2$, then $\theta_1 \equiv \theta_2 \pmod{\sqrt{\Delta}}$.
- ▶ Therefore, if S is a valid PDS, then for $\chi \neq 1_G$, we get

$$\overline{\chi(S)} = \overline{a\theta_1 + b\theta_2} = a\theta_1 + b\theta_2 \equiv (a+b)\theta_1 \equiv \chi(1)\theta_1 \pmod{\sqrt{\Delta}}.$$

▶ If S is a valid PDS, then $\overline{\chi(S)} \equiv \chi(1)\theta_1 \pmod{\sqrt{\Delta}}$ whenever $\chi \neq 1_G$.

- ▶ If S is a valid PDS, then $\overline{\chi(S)} \equiv \chi(1)\theta_1 \pmod{\sqrt{\Delta}}$ whenever $\chi \neq 1_G$.
- ▶ Idea: Evaluate $\overline{\chi(S)}\chi(a)$ "mod" some prime power dividing $\sqrt{\Delta}$.

- ▶ If S is a valid PDS, then $\overline{\chi(S)} \equiv \chi(1)\theta_1 \pmod{\sqrt{\Delta}}$ whenever $\chi \neq 1_G$.
- ▶ Idea: Evaluate $\overline{\chi(S)}\chi(a)$ "mod" some prime power dividing $\sqrt{\Delta}$.
- ▶ Remark: Although in general $\overline{\chi(S)}\chi(a)$ will not be an integer, we may use something known as a local ring, \mathfrak{R} , containing \mathbb{Z} , to evaluate $\overline{\chi(S)}\chi(a) \pmod{\mathfrak{p}^k}$.

- ▶ If S is a valid PDS, then $\overline{\chi(S)} \equiv \chi(1)\theta_1 \pmod{\sqrt{\Delta}}$ whenever $\chi \neq 1_G$.
- ▶ Idea: Evaluate $\overline{\chi(S)}\chi(a)$ "mod" some prime power dividing $\sqrt{\Delta}$.
- ▶ Remark: Although in general $\overline{\chi(S)}\chi(a)$ will not be an integer, we may use something known as a local ring, \mathfrak{R} , containing \mathbb{Z} , to evaluate $\overline{\chi(S)}\chi(a) \pmod{\mathfrak{p}^k}$.
- Now over this local ring, taking $x \in \mathbb{Z}$, then the residue $x \pmod{p^k}$ equals the residue of $x \pmod{p^k}$ if the ideal $\mathfrak p$ is properly chosen.

- ▶ If S is a valid PDS, then $\overline{\chi(S)} \equiv \chi(1)\theta_1 \pmod{\sqrt{\Delta}}$ whenever $\chi \neq 1_G$.
- ▶ Idea: Evaluate $\overline{\chi(S)}\chi(a)$ "mod" some prime power dividing $\sqrt{\Delta}$.
- ▶ Remark: Although in general $\overline{\chi(S)}\chi(a)$ will not be an integer, we may use something known as a local ring, \mathfrak{R} , containing \mathbb{Z} , to evaluate $\overline{\chi(S)}\chi(a) \pmod{\mathfrak{p}^k}$.
- Nover this local ring, taking $x \in \mathbb{Z}$, then the residue $x \pmod{p^k}$ equals the residue of $x \pmod{p^k}$ if the ideal $\mathfrak p$ is properly chosen.
- ► Therefore, $\overline{\chi(S)}\chi(a) \equiv \chi(1)\theta_1\chi(a) \pmod{\mathfrak{p}^k}$ whenever $\chi \neq 1_G$ like we wanted.

▶ Take the function Φ so that $\Phi(a) = \sum_{\chi \in Irr(G)} \overline{\chi(S)} \chi(a)$.

- ► Take the function Φ so that $Φ(a) = \sum_{\chi \in Irr(G)} \overline{\chi(S)} \chi(a)$.
- ▶ If S is a PDS, then $\overline{\chi(S)}\chi(a) \equiv \chi(1)\theta_1\chi(a) \pmod{\mathfrak{p}^k}$ when $\chi \neq 1_G$, then it is not too challenging to show that

$$\sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(S)} \chi(a) = k - \theta_1 \pmod{\mathfrak{p}^k}$$

whenever $a \neq 1$, and otherwise

$$\sum_{\chi \in \operatorname{Irr}(\mathcal{G})} \overline{\chi(\mathcal{S})} \chi(1) = k + |\mathcal{G}|(heta_1 - 1) \pmod{\mathfrak{p}^k}$$

- ► Take the function Φ so that $Φ(a) = \sum_{\chi \in Irr(G)} \overline{\chi(S)} \chi(a)$.
- ▶ If S is a PDS, then $\overline{\chi(S)}\chi(a) \equiv \chi(1)\theta_1\chi(a) \pmod{\mathfrak{p}^k}$ when $\chi \neq 1_G$, then it is not too challenging to show that

$$\sum_{\chi \in \operatorname{Irr}(\mathcal{G})} \overline{\chi(\mathcal{S})} \chi(\mathsf{a}) = \mathsf{k} - \theta_1 \pmod{\mathfrak{p}^k}$$

whenever $a \neq 1$, and otherwise

$$\sum_{\chi \in \operatorname{Irr}(\mathcal{G})} \overline{\chi(\mathcal{S})} \chi(1) = k + |\mathcal{G}|(heta_1 - 1) \pmod{\mathfrak{p}^k}$$

► Finally, $\Phi(a) \in \mathbb{Z}$, so $\Phi(a) = k - \theta_1 \pmod{p^k}$ and $\phi(1) = k + |G|(\theta_1 - 1) \pmod{p^k}$.

► Thus, if *S* is a valid PDS, then $|a^G \cap S||C_G(a)| \equiv k - \theta_1 \pmod{p^k}$.

- ▶ Thus, if S is a valid PDS, then $|a^G \cap S||C_G(a)| \equiv k \theta_1 \pmod{p^k}$.
- If p does not divide $|C_G(a)|$, then $|a^G \cap S| \equiv (k \theta_1)|C_G(a)|^{-1} \pmod{p^k}$. This gives us the modular restriction on S we hoped for.

- ► Thus, if S is a valid PDS, then $|a^G \cap S||C_G(a)| \equiv k \theta_1 \pmod{p^k}$.
- ▶ If p does not divide $|C_G(a)|$, then $|a^G \cap S| \equiv (k \theta_1)|C_G(a)|^{-1} \pmod{p^k}$. This gives us the modular restriction on S we hoped for.
- Now, let h_1, \ldots, h_r be conjugacy class representatives of G.

- ▶ Thus, if S is a valid PDS, then $|a^G \cap S||C_G(a)| \equiv k \theta_1 \pmod{p^k}$.
- ▶ If p does not divide $|C_G(a)|$, then $|a^G \cap S| \equiv (k \theta_1)|C_G(a)|^{-1} \pmod{p^k}$. This gives us the modular restriction on S we hoped for.
- Now, let h_1, \ldots, h_r be conjugacy class representatives of G.
- ▶ To search for a PDS S, we restrict to searching for a set of integers s_1, \ldots, s_r such that $\sum_{i=1}^r s_i = k$ and $s_i = (k \theta_1)|C_G(a)|^{-1} \pmod{p^k}$ for each p dividing $\sqrt{\Delta}$ but not dividing $|C_G(a)|$.

▶ This gives a set of constants $s_1, ..., s_r$ so that for any PDS D in G, $|h_i^G \cap D| = s_i$.

- ▶ This gives a set of constants $s_1, ..., s_r$ so that for any PDS D in G, $|h_i^G \cap D| = s_i$.
- We then modify Brady's Hill Climb algorithm to only search for PDSs satisfying this collection of constraints.

- ▶ This gives a set of constants $s_1, ..., s_r$ so that for any PDS D in G, $|h_i^G \cap D| = s_i$.
- We then modify Brady's Hill Climb algorithm to only search for PDSs satisfying this collection of constraints.
- Combining these techniques with the theorems from Ott, we computed all intersections $|h^G \cap D|$ for every feasible $(v, k, \lambda \mu)$ -PDS with v up to 506 (except for a small set of very specific v), and a further constrained set of PDSs for v up to 1300.

Applying the Results: PDSs We Ruled Out with $v \le 506$

V	k	λ	μ	V	k	λ	μ		V	k	λ	μ
10	3	0	1	120	28	14	4	-	171	50	13	15
26	10	3	4	120	42	8	18		176	40	12	8
36	14	7	4	122	55	24	25		176	49	12	14
40	12	2	4	126	25	8	4		189	60	27	15
50	21	8	9	126	50	13	24		189	88	37	44
56	10	0	2	126	60	33	24		190	36	18	4
66	20	10	4	130	48	20	16		190	45	12	10
70	27	12	9	135	64	28	32		190	84	33	40
78	22	11	4	136	30	15	4		190	84	38	36
82	36	15	16	154	48	12	16		190	90	45	40
100	33	14	9	154	72	26	40		196	39	2	9
105	40	15	15	156	30	4	6		196	60	23	16
112	30	2	10	165	36	3	9		196	81	42	27
112	36	10	12	170	78	35	36		204	28	2	4

Applying the Results: PDSs We Ruled Out with $v \le 506$

v	k	λ	μ	V	k	λ	μ	V	k	λ	μ
204	63	22	18	266	45	0	9	290	136	63	64
208	45	8	10	273	72	21	18	297	40	7	5
210	38	19	4	273	136	65	70	297	104	31	39
220	72	22	24	276	44	22	4	300	46	23	4
220	84	38	28	276	75	10	24	306	55	4	11
222	51	20	9	276	75	18	21	306	60	10	12
226	105	48	49	276	110	52	38	322	96	20	32
231	70	21	21	276	135	78	54	324	68	7	16
238	75	20	25	280	36	8	4	324	95	34	25
243	66	9	21	280	117	44	52	330	63	24	9
246	85	20	34	286	95	24	35	336	80	28	16
246	105	36	51	286	125	60	50	336	125	40	50
246	119	64	51	288	105	52	30	340	108	30	36
260	70	15	20	288	112	36	48	342	33	4	3

Applying the Results: PDSs We Ruled Out with $v \le 506$

V	k	λ	μ	V	k	λ	μ	V	k	λ	μ
342	66	15	12	364	165	68	80	399	198	97	99
343	162	81	72	364	176	90	80	400	21	2	1
351	70	13	14	372	56	10	8	400	56	6	8
351	140	49	60	375	102	45	21	400	133	42	45
351	160	64	80	375	176	94	72	405	132	63	33
352	26	0	2	375	182	85	91	405	196	91	98
352	108	44	28	378	52	1	8	406	54	27	4
352	126	50	42	378	52	26	4	406	108	30	28
362	171	80	81	385	60	5	10	406	165	68	66
364	33	2	3	385	168	77	70	406	189	84	91
364	66	20	10	392	69	26	9	406	195	96	91
364	88	12	24	392	153	54	63	408	176	70	80
364	120	38	40	396	135	30	54	414	63	12	9
364	121	48	36	396	150	51	60	416	100	36	20

Applying the Results: PDSs We Ruled Out with $v \leq 506$

V	k	λ	μ	V	k	λ	μ	V	k	λ	μ
416	165	64	66	456	140	40	44	476	133	42	35
416	165	64	66	456	140	58	36	476	133	60	28
418	147	56	49	456	175	78	60	484	105	14	25
430	39	8	3	456	182	73	72	484	138	47	36
430	135	36	45	456	195	74	90	490	165	56	55
430	165	68	60	460	85	18	15	490	192	92	64
438	92	31	16	460	99	18	22	494	85	12	15
441	56	7	7	460	147	42	49	495	190	85	65
441	190	89	76	460	204	78	100	495	208	86	88
441	220	95	124	460	216	116	88	495	238	109	119
442	210	99	100	460	225	120	100	496	54	4	6
456	65	10	9	465	144	43	45	498	161	64	46
456	80	4	16	470	126	27	36	506	100	18	20
456	130	24	42	474	165	52	60				•

(v, k, λ, μ)	ID	Conjugacy Class Intersections
(21, 10, 3, 6)	1	[0, 3, 2, 3, 2]
(27, 10, 1, 5)	3	[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
	4	[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
(55, 18, 9, 4)	1	[0, 4, 1, 4, 1, 4, 4]
(57, 24, 11, 9)	1	[0, 9, 1, 9, 1, 1, 1, 1, 1]
(96, 35, 10, 14)	64	[0, 4, 14, 1, 1, 4, 4, 1, 2, 4]
	227	[0, 4, 14, 1, 1, 4, 4, 2, 1, 4]
(111, 44, 19, 16)	1	[0, 16, 1, 16, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1]

(v, k, λ, μ)	ID	Conjugacy Class Intersections
(125, 28, 3, 7)	3	[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1, 1]
	4	[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		1, 1, 1, 1, 1, 1]
(125, 52, 15, 26)	3	[0, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2,
		2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2,
		2, 2, 2, 2, 2]
	4	[0, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2,
		2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2,
		2, 2, 2, 2, 2, 2]

(v, k, λ, μ)	ID	Conjugacy Class Intersections
(136, 30, 8, 6)	12	[0, 3, 3, 8, 2, 3, 3, 3, 3, 2]
(136, 60, 24, 28)	12	[0, 7, 10, 4, 4, 7, 7, 10, 7, 4]
(136, 63, 30, 28)	12	[0, 7, 7, 13, 4, 7, 7, 7, 7, 4]
(148, 63, 22, 30)	3	[0, 15, 15, 2, 15, 2, 2, 2, 2, 2,
		2, 2, 2]
(148, 70, 36, 30)	3	[0, 15, 22, 2, 15, 2, 2, 2, 2, 2,
		2, 2, 2]
(155, 42, 17, 9)	1	[0, 9, 1, 9, 9, 1, 9, 1, 1, 1, 1]

(v, k, λ, μ)	ID	Conjugacy Class Intersections
(160, 54, 18, 18)	199	[0, 6, 6, 0, 0, 0, 6, 6, 6, 6, 6,
		6, 6]
	199	[0, 6, 0, 6, 0, 0, 6, 6, 6, 6, 6,
		6, 6]
	199	[0, 6, 0, 0, 6, 0, 6, 6, 6, 6, 6,
		6, 6]
	234	[0, 6, 12, 3, 3, 0, 6, 6, 6, 12]
	234	[0, 6, 12, 3, 0, 3, 6, 6, 6, 12]
	234	[0, 6, 12, 0, 3, 3, 6, 6, 6, 12]
(171, 34, 17, 4)	3	[0, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4]

• • •

We used our PDS class intersections to construct some sporadic examples of PDSs and two PDS families.

- We used our PDS class intersections to construct some sporadic examples of PDSs and two PDS families.
- Both families arise from combinatorial constructions in adjacent mathematical fields, which have not been recognized as PDSs either at all, or until very recently.

- We used our PDS class intersections to construct some sporadic examples of PDSs and two PDS families.
- ▶ Both families arise from combinatorial constructions in adjacent mathematical fields, which have not been recognized as PDSs either at all, or until very recently.
- One family, a consequence of work by Clapham, was unknown until a paper by Ponomarenko and Ryabov in 2024.

- We used our PDS class intersections to construct some sporadic examples of PDSs and two PDS families.
- ▶ Both families arise from combinatorial constructions in adjacent mathematical fields, which have not been recognized as PDSs either at all, or until very recently.
- One family, a consequence of work by Clapham, was unknown until a paper by Ponomarenko and Ryabov in 2024.
- ▶ Theorem (Clapham): Let p be a prime such that $p^d > 9$ and $p^d \equiv 7 \pmod{12}$. Then, there exist

$$\left(p^d\left(\frac{p^d-1}{6}\right),3\left(\frac{p^d-3}{2}\right),\frac{p^d+3}{2},9\right)$$

PDSs in the nonabelian group

$$C_{p^d} \rtimes C_{\frac{p^d-1}{6}} \leq \left(\mathrm{GF}(p^d), +\right) \rtimes \left(\mathrm{GF}(p^d)^\times, \cdot\right).$$

Another family, a consequence from a paper by Wilson, appears to not have been recognized to this day.

- ► Another family, a consequence from a paper by Wilson, appears to not have been recognized to this day.
- ▶ Theorem (Wilson): Let p be a prime such that $p^d > (\frac{1}{2}k(k-1))^{k(k-1)}$. If $p^d \equiv k(k-1) + 1$ (mod 2k(k-1)), then there exists a

$$\left(p^d\left(\frac{p^d-1}{k(k-1)}\right), \frac{k(p^d-k)}{k-1}, \frac{p^d-1}{k-1}+(k-1)^2-2, k^2\right)$$

PDS in the nonabelian group

$$C_{p^d} \rtimes C_{\frac{p^d-1}{k(k-1)}} \leq \left(\mathrm{GF}(p^d), +\right) \rtimes \left(\mathrm{GF}(p^d)^\times, \cdot\right).$$

▶ What can we use the following theorem to rule out in general?

What can we use the following theorem to rule out in general?

▶ Theorem: Let *p* be a prime dividing |*H*| and $k - \theta_{\alpha}$, (α ∈ {1,2}). Let *P* be a Sylow *p*-subgroup of *G*. Let π_{β} be the product of primes powers *q* such that q|v and $q|(k - \theta_{\beta})$ (β ≠ α) such that $q \not \mid \sqrt{\Delta}$. Then, if *G* is solvable,

$$\pi_{\beta} \equiv 1 \pmod{p}$$
.

▶ To search for a PDS S, we restrict to searching for a set of integers s_1, \ldots, s_r such that $\sum_{i=1}^r s_i = k$ and $s_i = (k - \theta_1) |C_G(a)|^{-1} \pmod{p^k}$ for each p dividing $\sqrt{\Delta}$ but not dividing $|C_G(a)|$.

- ▶ To search for a PDS S, we restrict to searching for a set of integers s_1, \ldots, s_r such that $\sum_{i=1}^r s_i = k$ and $s_i = (k \theta_1)|C_G(a)|^{-1} \pmod{p^k}$ for each p dividing $\sqrt{\Delta}$ but not dividing $|C_G(a)|$.
- **Problem:** It is especially hard searching in groups where for a prime p dividing $\sqrt{\Delta}$, we also expect p to divide $|C_G(a)|$. For these groups, we need some new methods.

- ▶ To search for a PDS S, we restrict to searching for a set of integers s_1, \ldots, s_r such that $\sum_{i=1}^r s_i = k$ and $s_i = (k \theta_1)|C_G(a)|^{-1} \pmod{p^k}$ for each p dividing $\sqrt{\Delta}$ but not dividing $|C_G(a)|$.
- ▶ Problem: It is especially hard searching in groups where for a prime p dividing $\sqrt{\Delta}$, we also expect p to divide $|C_G(a)|$. For these groups, we need some new methods.
- ightharpoonup (Possible) Solution: We perform our search as if the s_i are independent, but in general they will not be independent of each other. Leverage their dependence to simplify the search.

▶ Remark: If we have a sum $\sum_{i=1}^{\ell} \overline{\chi_{k_i}(S)} \chi(a) \in \mathbb{Z}$, and it is possible to partition the k_i such that the two sets $\{\chi_{s_i}\}$ and $\{\chi_{r_i}\}$ take their values in coprime cyclotomic number rings, then $\sum_{i=1}^{\ell} \overline{\chi_{s_i}(S)} \chi(a)$ and $\sum_{i=1}^{\ell} \overline{\chi_{r_i}(S)} \chi(a)$ are in \mathbb{Z} .

▶ Remark: If we have a sum $\sum_{i=1}^{\ell} \overline{\chi_{k_i}(S)} \chi(a) \in \mathbb{Z}$, and it is possible to partition the k_i such that the two sets $\{\chi_{s_i}\}$ and $\{\chi_{r_i}\}$ take their values in coprime cyclotomic number rings, then $\sum_{i=1}^{\ell} \overline{\chi_{s_i}(S)} \chi(a)$ and $\sum_{i=1}^{\ell} \overline{\chi_{r_i}(S)} \chi(a)$ are in \mathbb{Z} .

► Choose "good" partitions $\{\chi_{a_i}\}$, $\{\chi_{b_i}\}$, ... of the set χ_1, \ldots, χ_n . Find S such that $\sum_{i=1}^{\ell} \overline{\chi_{a_i}(S)} \chi(a)$, $\sum_{i=1}^{\ell} \overline{\chi_{b_i}(S)} \chi(a)$, ... are in \mathbb{Z} .

Thank you!